Grid-enabled Ensemble Subsurface Modeling

نویسندگان

  • Xin Li
  • Zhou Lei
  • Christopher D White
  • Gabrielle Allen
  • Guan Qin
  • Frank T-C. Tsai
چکیده

Ensemble Kalman Filter (EnKF) uses a randomized ensemble of subsurface models for performance estimation. However, the complexity of geological models and the requirement of a large number of simulation runs make routine applications extremely difficult due to expensive computation cost. Grid computing technologies provide a cost-efficient way to combine geographically distributed computing resources to solve large-scale data and computation intensive problems. We design and implement a grid-enabled EnKF solution to ill-posed model inversion problems for subsurface modeling. It has been integrated into the ResGrid, a problem solving environment aimed at managing distributed computing resources and conducting subsurface-related modeling studies. Two use cases in reservoir studies indicate that the enhanced ResGrid efficiently performs EnKF inversions to obtain relatively accurate, uncertainty-ware predictions on reservoir production. This grid-enabled EnKF solution is also being applied for data assimilation of large-scale groundwater hydrology nonlinear models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Geologic Fault Network Geometry by Using a Grid-Based Ensemble Kalman Filter

Discrete geologic features such as faults and highly permeable embedded channels can significantly affect subsurface flow and transport characteristics. Therefore, they must be properly identified, parameterized, and represented in subsurface simulation models. In this work, we use an improved ensemble Kalman filter (EnKF) for history-matching fault network geometry from production data. EnKF i...

متن کامل

Rapid Construction of High-Resolution Models Constrained to Dynamic Data

Distance-based techniques have recently emerged in the context of ensemble modeling, in particular for history matching, model selection and uncertainty quantification. Starting with an initial ensemble of model realizations, a distance between any two realizations is defined. The purpose of this distance is to introduce the purpose of modeling into the process of geological modeling, thereby p...

متن کامل

Madhuri Bhavsar , Anupam K Singh , Shrikant Pradhan Performance Assessment of Computational Grid on Weather Indices from HOAPS Data

Long term rainfall analysis and prediction is a challenging task especially in the modern world where the impact of global warming is creating complications in environmental issues. These factors which are data intensive require high performance computational modeling for accurate prediction. This research paper describes a prototype which is designed and developed on grid environment using a n...

متن کامل

Performance Assessment of Computational Gridon Weather Indices from HOAPS Data

Long term rainfall analysis and prediction is a challenging task especially in the modern world where the impact of global warming is creating complications in environmental issues. These factors which are data intensive require high performance computational modeling for accurate prediction. This research paper describes a prototype which is designed and developed on grid environment using a n...

متن کامل

Parameter estimation of subsurface flow models using iterative regularized ensemble Kalman filter

A new parameter estimation algorithm based on ensemble Kalman filter (EnKF) is developed. The developed algorithm combined with the proposed problem parametrization offers an efficient parameter estimation method that converges using very small ensembles. The inverse problem is formulated as a sequential data integration problem. Gaussian Process Regression (GRP) is used to integrate the prior ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007